

© 2015 ScaleArc. All Rights Reserved. | 1

Technical Brief

Caching technology is

frequently called upon to

improve performance in many

contexts.

Introduction
Today’s complex business applications typically contain massive volumes of data
and serve large numbers of users—a trend that drives performance requirements

that are increasingly difficult to attain. Caching technology is frequently called upon
to improve performance in many contexts.

While most relational databases contain an in-memory cache, these

implementations are largely ineffective since they are coarse grained, lack
instrumentation, and use global locks. Also, they clear the table-based cache
frequently, for every entry modification. These constraints have led

application developers to use generic caching frameworks and adapt them
for SQL queries, a process that requires significant development resources,
both to implement invasive changes to the application and to support

ongoing maintenance.

ScaleArc provides a transparent query result-set caching solution for
databases that requires no changes to existing applications or database

servers and does not require any development effort to realize all of the caching
benefits. ScaleArc’s SQL caching is an agentless approach that uses an in-memory
key-value store (i.e., a NoSQL database) to store repetitive query responses,

providing very fast response to subsequent matching queries. ScaleArc caching
works at the query pattern level; these SQL query patterns are generated at wire
speed from de-duplication of ScaleArc’s centralized logging of all SQL queries

flowing through ScaleArc. The cache can operate in various ways, including
through the API.

Transparent SQL Query Caching
ScaleArc’s patented SQL query cache is the world’s first transparent NoSQL
technology, which provides any database-driven application NoSQL-like
performance without any application changes. ScaleArc’s SQL query cache is fully

ACID compliant and controllable by users as they see fit. By default, no caching is
enabled, ensuring the application performs identical to how it would if it were
working directly with the database server.

ScaleArc’s cache provides users the ability to cache read-only SQL query
responses in an extremely granular manner and to control how and when the cache

Transparent SQL Query Caching
A solution that requires no changes to existing applications

or database servers

 Technical Brief | Transparent SQL Query Caching

© 2015 ScaleArc. All Rights Reserved. | 2

expires using various methods. Users can choose among Time-to-Live (TTL)

invalidation, API or query comment/hint-based invalidation, or automatic invalidation
based on incoming writes or updates.

Figure 1. Convert your application analytics patterns into a Regex rule to
match a specific query.

ScaleArc makes it very easy to identify which read-only SQL queries are good
candidates for caching and create cache rules to see how effective the cache rules
are in improving performance and reducing database load. ScaleArc’s analytics

displays provide administrators with a view of all the database queries being
executed on the database cluster and lets them configure cache rules from the
query patterns provided. ScaleArc shows this data in a simple, pattern-based view,

which groups queries with the same SQL syntax but different variables together,
and makes it easy to see which queries are resource intensive and frequent.

ScaleArc’s cache rules are based on PCRE (Perl Compatible Regular

Expressions), the most common Regular Expressions (Regex) format used today.
But you don’t need to know Regex to use ScaleArc. ScaleArc’s analytics let you
convert your application analytics patterns into a Regex rule to match a specific

query.

For example, if you find a SELECT query, or a read-only stored procedure that
queries relatively static data that is frequently accessed such as a Zip Codes table,

you can click on that pattern in ScaleArc’s analytics UI and choose to cache it for a
user-defined period. This click creates a cache rule that matches all queries with
the same SQL syntax but different variables. Once these queries are being served

from cache, you will see a cache hit rate in the analytics view as well as the time
saved by or performance improvement resulting from this cache rule.

 Technical Brief | Transparent SQL Query Caching

© 2015 ScaleArc. All Rights Reserved. | 3

Figure 2. ScaleArc detects a SQL Query such as the one above, and a pattern
is created from it, which can be automatically converted into a Regex rule

with one click by the user.

Once a read query matches a cache rule, the result set of the query is stored in the
native database protocol format in an in-memory NoSQL cache purpose-built by

ScaleArc. The next time the application sends the same query, the stored response
is served by ScaleArc, as long as the entry is still valid. Since the application sees
the response in the native database protocol format, it thinks the response has

come from the database rather than an intermediate NoSQL cache and processes
the response as usual.

ScaleArc’s cache can be expired / invalidated using three different methods, which

suit a wide variety of use cases:

 Time-to-live (TTL)-based invalidation

 Automatic Cache Invalidation

 API-, Schedule-, or Query Comments-based Invalidation

Time-to-live (TTL)-based invalidation
TTL-based invalidation is the most commonly used cache expiration method,
because it is functionally similar to how most NoSQL caches work, yet is

transparent to the application. ScaleArc lets you pick the read queries you wish to
cache and define how long the cache should be valid, from 1 second to 999 days.
The flexibility of being able to pick a unique TTL for each query type or pattern

make it possible to use the cache for a wide array of query types. Once a query has
been cached using the TTL-based invalidation method, it will keep getting served
entirely by ScaleArc for as long as the TTL is still valid. The queries cached using

the TTL method can also be manually expired using the API or the query hints.

The following simple examples are use cases that can be handled using TTL-based
invalidation:

 Range / Sort / Multi-Variable / Multi-Row Queries

Such queries are typically significantly more computationally expensive
than simple point select queries. They also fetch a lot more records at the

same time and hence are extremely I/O intensive. A lot of web applications
use such queries for fetching top records for a listing or home page, such
as “Top Selling Items” on an eCommerce website or “Latest Headlines” on
a news website. Since such data does not change frequently and is not

transactional in nature but tends to be queried quite regularly, it’s a good

Query Example

SELECT top 100 * FROM [PHONES] WHERE Phone>=209447 and Phone<=210447

Analytics Pattern Example

SELECT top (.*) * FROM [PHONES] WHERE Phone>=(.*) and Phone<=(.*)

Automatically generated Regular Expression Pattern Rule that will match
the query with all variables

SELECT\stop\s(([+-.]|)[0-9.]+)\s*\sFROM\s\[iDBTest\]\sWHERE\sPhone\>\=(([+-.]|)[0-
9.]+)\sand\sPhone\<\=(([+-.]|)[0-9.]+)

 Technical Brief | Transparent SQL Query Caching

© 2015 ScaleArc. All Rights Reserved. | 4

ScaleArc’s auto cache

invalidation feature uses the

transparent NoSQL technology

by extracting metadata from the

query and tagging the cache

objects used to associate cache

entries with invalidation queries.

idea to cache such queries for between 1 to 10 minutes based on your

business’s “freshness” requirement. For example, a massive multiplayer
gaming customer cached the query that fetches “Top 50 Players” out of a
table of more than 20 million records with a TTL of 5 minutes. The

customer achieved a 99% cache hit rate on that query and reduced their
server I/O by more than 20% with one simple cache rule. The 5-minute time
was chosen because that was the average amount of time users spent on a

game session, and the “Top 50” list was shown on the screen after the
game session ends.

 Point Selects for Infrequently changing data / meta -data

Many applications use a lot of point queries to fetch details on items in a
table that either never change or change very infrequently. A lot of
metadata, which is used by applications to form correlations between

different pieces of data, falls into this category. Some examples are:

o queries that fetch the city name based on a provided zip code,
could be cached for 24 hours or more and provide over 99.9%

offload
o queries that fetch the full name of a company based on a stock

quote lookup, such as MSFT translating to Microsoft, Inc. can also

be cached for 12 hours or more, as stock codes don’t change
within a day, and again achieve 99.9% or more hit rate

o queries that fetch the details of a particular SKU from a products

table in an eCommerce site could be cached for as little as 1-5
minutes for sites where item information changes frequently and
still achieve 80% offload or greater in most cases –sites where the

information changes less frequently could use a longer time and
gain a larger offload

 Large Aggregation / Reporting Queries on Old Data

A lot of applications run historical reports where they refer to data older
than the current date, and that data doesn’t change at all once it’s been
written. Typically, such query patterns are fairly resource intensive for the

database to execute and lead to a lot of disk I/O as well. An
example of this model could be queries that fetch historical graph
data for stock quotes or a query that fetches details on all orders

processed at a previous date. These kind of queries are used by
managers, admins, and analysts frequently and are accessed by
many people in the same day. By caching such queries for 24 hours

or more, you could offload a massive amount of burst database I/O
and speed up viewing of such information by the users.

Automatic Cache Invalidation
ScaleArc has introduced a new approach to cache invalidation to the
industry – a method for automatically invalidating cache entries that enables
true ACID-compliant caching. This method tracks data changes by

extracting metadata from update or delete queries or from within SQL
comments. ScaleArc’s auto cache invalidation feature uses the transparent
NoSQL technology by extracting metadata from the query and tagging the

cache objects used to associate cache entries with invalidation queries. With this
invalidation method, ScaleArc can guarantee that its cache will not serve stale data.
This feature significantly increases the number of use cases where you can apply

 Technical Brief | Transparent SQL Query Caching

© 2015 ScaleArc. All Rights Reserved. | 5

caching without the risk of data inconsistency challenges that can result from using

TTL-based invalidation.

The ScaleArc analytics UI helps identify the queries that belong to the same table
and access the same column. Users can then add invalidation patterns to an

invalidation group that manipulates the same table and column. ScaleArc then has
a cache invalidation group consisting of read queries or stored procedures as well
invalidation queries or stored procedures all using a common column. ScaleArc

supports string, boolean, long, double, short, byte, binary, decimal, byteArray, date,
time, timestamp, and CharacterStreams as column types.

For example, consider a product catalog table with a column of “product_id.” The

application issues select or update queries to retrieve or update data from the table
using “product_id.” ScaleArc uses the “product_id” value as the metadata to tag the
cache objects internally.

Figure 3. An auto cache invalidation group can be formed by the above
select and update queries since both of them use the same column

“product_id.”.

Once the cache rules are created and grouped, ScaleArc will add cache objects
created by the select calls with the metadata value extracted from the column

location. When the application modifies data with the update or insert queries,
ScaleArc will extract the metadata values from the column location. Using the
column value or metadata, ScaleArc will invalidate only those cache items where

the column value or metadata is an exact match. Subsequent select queries with
the same invalidated column value(s) will get a cache miss and will be sent to the
database. The invalidation mechanisms can also be triggered via API or as part of a

SQL comment that includes the metadata for the column values.

The following use cases are supported using the auto cache invalidation-based
method:

 Shopping cart data

Shopping cart data is tracked for a user in an eCommerce application on
every page load. Users browse through a lot of items before the final
checkout, which puts significant load on the database. It is widely known

that having slow load times impacts sales, and querying cart data from the
database can slow web page performance. Up to 40% of web users
abandon an eCommerce site if page load times exceed 3 seconds.

Shopping cart data, despite being unique for each user, can now be cached
with auto cache invalidation since ScaleArc ensures data consistency and
reflects the new items in ScaleArc’s cache as soon as the cart is modified.

 User profile data

User profile data, that is personal data associated with a specific user, is
typically the most accessed data for the majority of applications. User

Cache Query

SELECT * FROM catalog.product_details WHERE catalog.product_id=1

Invalidation Query

UPDATE catalog SET name = 'ScaleArc‘ WHERE product_id = 1

 Technical Brief | Transparent SQL Query Caching

© 2015 ScaleArc. All Rights Reserved. | 6

Using ScaleArc’s cache

management APIs, or query

hints, you can customize when

cache is created, and you can

clear or invalidate cache

programmatically either for an

individual query or for a whole

group of queries.

profile databases need to have 100% uptime because they are validating

users before any transactions can be performed. Users seldom modify their
profiles, but when they do – such as update a password – the app must
immediately reflect the changed data. The user profile database lends

itself very well to auto cache invalidation since each user has a unique id
within the database. Data tracking within auto cache invalidation keeps the
user profile query cache up to date and significantly offloads the database

from processing repetitive queries.

 Auction data

eCommerce sites where users can buy and sell items in an auction require

the auction price and associated data such as current bidders to be fetched
and updated frequently. The page load performance and the accuracy of
auction data are extremely important for these sites. Database resources

are heavily taxed towards the end of the auction when many more users
are watching an item and starting a bidding war. Each item has a unique
identifier that is used to query the data, making it a prime candidate for auto

cache invalidation.

Auto cache invalidation can also be useful where point selects are prevalent but
cannot be cached using the TTL-based method.

API-, Schedule-, or Query Comments-based Invalidation
This method of cache invalidation is used less often, but provides for
significantly more customizability and complex caching use cases than the
other two methods. Using ScaleArc’s cache management APIs, or query

hints, you can customize when cache is created, and you can clear or
invalidate cache programmatically either for an individual query or for a
whole group of queries.

ScaleArc’s RESTful cache management API calls, or the cache
management UI which is powered by the same APIs, let you clear cache at
multiple levels. You can choose to clear or invalidate queries related to a

specific cache pattern within a specific database, or you can clear the cache
for the whole database or a whole cluster with a single API call. This
flexibility makes it easy to refresh the cache at custom intervals or after a

major data change operation. For example, you could immediately clear the
cache for all queries for a Zip Code table if the postal service issues a new
list.

 Technical Brief | Transparent SQL Query Caching

© 2015 ScaleArc. All Rights Reserved. | 7

Figure 4. ScaleArc’s RESTful cache management API calls, or the cache

management UI which is powered by the same APIs, let you clear cache at
multiple levels.

ScaleArc also provides a cache-management scheduler, which lets you clear cache

at pre-defined intervals. This is very useful to automate clearing cache when data
refresh happens at predictable windows. For example, if a logistics platform
receives new location data every morning at 6 AM on workdays, you could

schedule the system to automatically clear all cache related to the logistics
database, or to a specific table, automatically every day at 6 AM using the ScaleArc
cache management scheduler.

Figure 5. Clear cache at pre-defined intervals with ScaleArc’s cache-
management scheduler.

Last, but not the least, ScaleArc lets you control cache functions using query hints
or comments. This method is very useful for immediately caching or invalidating
specific queries from within the application. This approach is useful when

developers want to control ScaleArc’s cache just as granularly as they would a

 Technical Brief | Transparent SQL Query Caching

© 2015 ScaleArc. All Rights Reserved. | 8

traditional NoSQL cache but do so with minimal changes to the application – and no

need to deal with additional NoSQL APIs.

ScaleArc extends the existing SQL comments functionality that exists within all
databases and uses that to control caching functions. This architecture is extremely

beneficial from a compatibility standpoint, because even if the application ever has
to connect directly to the database server without ScaleArc, the application will still
work as expected without any errors – it just won’t have the benefit of the ScaleArc

cache.

Figure 6. By simply prepending a SQL query with the above comments, you

can cache, invalidate, or skip cache for certain queries.

ScaleArc has been granted a patent on “Method and system for transparent
database query caching”. ScaleArc Patent #8,543,554

Advantages over Memcached
To accelerate application performance, app developers are using generic caching
frameworks and adapting them for SQL queries, a process that requires significant

development resources, both to implement invasive changes to the application and
to support ongoing maintenance.

NoSQL-based caching technologies have proliferated as a result. For example,

Memcached is a popular generic caching framework that is sometimes used for
SQL query caching. While Memcached can address some performance and scaling
issues and can cache objects other than queries, it has several major flaws when

used in the context of SQL query caching:

 Memcached requires significant changes to each application, limiting its
deployment to organizations that are willing to commit substantial
engineering resources.

 Application developers need to manually manage the cache, adding
complexity.

 Memcached is not designed specifically for SQL, making some tasks

cumbersome, such as deletion of large swathes of cache.

 Memcached does not provide cache persistence across server reboots.

 Memcached does not provide cache usage statistics on a per-query-pattern
basis.

 Large installations of Memcached suffer from a high TCP connection count,
leading to scaling difficulties.

 Memcached does not continuously replicate cache to a failover server.

 Memcached does not authenticate users, possibly reducing the security
posture of the application stack.

/*ttl(60)*/SELECT * from CountriesList - This comment will cache the specified query for 60

seconds.

/*wipe*/SELECT * from CountriesList - This comment will wipe or invalidate the query specified and
get the current results from the database servers.

/*nocache*/SELECT * from CountriesList - This comment will skip the cache for the query specified
and get the current results from the database servers.

http://patft.uspto.gov/netacgi/nph-Parser?Sect2=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/search-bool.html&r=1&f=G&l=50&d=PALL&RefSrch=yes&Query=PN/8543554

ScaleArc is the leading provider of database load balancing software. The ScaleArc software
inserts transparently between applications and databases, creating an agile data tier that
provides continuous availability and increased performance for all apps. With ScaleArc, enterprises

also gain instant database scalability and a new level of real-time visibility for their application
environments, both on prem and in the cloud. Learn more about ScaleArc, our customers,
and our partners at www.ScaleArc.com.

© 2015 ScaleArc. All Rights Reserved. ScaleArc and the ScaleArc logo are trademarks or

registered trademarks of ScaleArc in the United States and other countries. All brand names,
product names, or trademarks belong to their respective holders.

02/23/15

2901 Tasman Drive, Suite 205
Santa Clara, CA 95054

Phone: 1-408-780-2040
Fax: 1-408-427-3748
www.scalearc.com

 Technical Brief | Transparent SQL Query Caching

Summary
Caching has long been a popular technique in computing to shorten data access times,

to reduce latency and to improve input/output operations. In the context of
applications, caching improves application performance. However, as we previously
explored, caching approaches in databases have limited advantages: invasive changes

to the application are required and a fundamental need to support ongoing
maintenance. Developers have turned to Memcached, a free popular open source
distributed memory object caching system, for database caching, but it too has several

major flaws.

ScaleArc offers a simple way to leverage the performance advantages of caching that
requires no changes to existing applications or database servers and does not require

any development effort. For more information on ScaleArc’s caching technology,
please visit http://www.scalearc.com/how-it-works/performance-
features/transparent-in-memory-query-caching.

http://www.scalearc.com/
http://www.scalearc.com/
http://www.scalearc.com/how-it-works/performance-features/transparent-in-memory-query-caching
http://www.scalearc.com/how-it-works/performance-features/transparent-in-memory-query-caching

	Introduction
	Transparent SQL Query Caching
	Time-to-live (TTL)-based invalidation
	Automatic Cache Invalidation
	API-, Schedule-, or Query Comments-based Invalidation

	Advantages over Memcached
	Summary

